Home About Latest Browse RSS Advanced Search

Federal Reserve Bank of Atlanta
FRB Atlanta Working Paper
Preference-free option pricing with path-dependent volatility: A closed-form approach
Steven L. Heston
Saikat Nandi

This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed-form solutions for option prices using the formula of Heston (1993). Toward that purpose, we present the necessary mappings, based on Foster and Nelson (1994), such that one can approximate (arbitrarily closely) the parameters of the continuous-time model on the basis of the parameters of the discrete-time GARCH model. The discrete-time GARCH parameters can be estimated easily just by observing the history of asset prices. ; Unlike most option pricing models that are based on the absence of arbitrage alone, a parameter related to the expected return/risk premium of the asset does appear in the continuous-time option formula. However, given other parameters, option prices are not at all sensitive to the risk premium parameter, which is often imprecisely estimated.

Download Full text
Cite this item
Steven L. Heston & Saikat Nandi, Preference-free option pricing with path-dependent volatility: A closed-form approach, Federal Reserve Bank of Atlanta, FRB Atlanta Working Paper 98-20, 1998.
More from this series
JEL Classification:
Subject headings:
Keywords: Options (Finance)
For corrections, contact Elaine Clokey ()
Fed-in-Print is the central catalog of publications within the Federal Reserve System. It is managed and hosted by the Economic Research Division, Federal Reserve Bank of St. Louis.

Privacy Legal